The "Dirty Half Dozen" - The Criteria Pollutants

Robert J. Wayland, Ph.D.
Group Leader, Combustion Group
Emission Standards Division
Office of Air Quality Planning & Standards
U.S. Environmental Protection Agency

Sources of Air Pollution

- Air pollution comes from a variety of sources
 - Stationary Sources factories, power plants,
 smelters
 - Area Sources dry cleaners, degreasing operations
 - Mobile Sources cars, buses, planes, trucks, trains
 - Biogenic Sources windblown dust,
 volcanic eruptions, forests

Criteria Pollutants

- Pollution sources emit a wide variety of pollutants
 - Carbon Monoxide (CO)
 - Lead (Pb)
 - Nitrogen Dioxide (NO₂)
 - Ozone (O_3)
 - Particulate Matter (PM₁₀ and PM_{2.5})
 - Sulfur Dioxide (SO₂)

Regulatory Authority

- Clean Air Act (CAA) provides the principal framework for national, state, and local efforts to protect air quality
- Office of Air Quality Planning and Standards (OAQPS) is responsible for setting standards
- National Ambient Air Quality Standards (NAAQS)

NAAQS

- Two Types of Standards
 - Primary Standards provides limits to protect public health, including the health of "sensitive" populations (e.g., asthmatics, children, and the elderly)
 - Secondary Standards provides limits to protect public welfare (e.g., protection against decreased visibility, damage to animals, crops, vegetation and buildings)

Implementation of the NAAQS

- Criteria pollutants are monitored by the EPA, as well as by national, state and local organizations
- Attainment when a given area's monitored air quality has concentrations below the NAAQS limits
- Nonattainment when a given area's monitored air quality exceeds the concentrations outlined by the NAAQS

Nonattainment Areas (1999)

NAAQS Limits

Carbon Monoxide (CO)

8-hr Avg 9 ppm (10 mg/m³)* | Primary 1-hr Avg 35 ppm (40 mg/m³)* | Primary

Nitrogen Dioxide (NO₂)

Ann Arith

Mean 0.053 ppm $(100 \,\mu\text{g/m}^3)^*$ Primary/Secondary

Ozone (O_3)

1-hr Avg 0.12 ppm $(235 \,\mu\text{g/m}^3)^*$ Primary/Secondary 8-hr Avg 0.08 ppm $(157 \,\mu\text{g/m}^3)^*$ Primary/Secondary

Lead (Pb)

Quart. Avg 1.5 µg/m³ Primary/ Secondary

NAAQS Limits (con't)

PM_{10}			1,	100	
	Ann Arith		1		
	Mean		$50 \mu g/m^3$	Primary/Secondary	
	24-hr Avg		$150 \mu g/m^3$	Primary/Secondary	
$PM_{2.5}$					
	Ann Arith				
	Mean		$15 \mu g/m^3$	Primary/Secondary	
	24-hr Avg		$65 \mu g/m^3$	Primary/Secondary	
Sulfur Dioxide (SO ₂)					
	Ann Arith				
	Mean	0.03 ppm	$(80 \mu g/m^3)*$	Primary	
	24-hr Avg	0.14 ppm	$(365 \mu g/m^3)^*$	Primary	
	3-hr Avg	0.50 ppm	$(1300 \mu g/m^3)^*$	Secondary	

^{* -} Parenthetical value is an approximately equivalent concentration

Properties of the Criteria Pollutants

Pollutant	Description	Sources	Effects
Carbon Monoxide (CO)	Colorless, odorless gas (and at much higher levels, poisonous)	Vehicle exhaust, industrial processes, wood stoves, wildfires, kerosene heaters	Headaches, reduced mental alertness, death; heart damage
Lead (Pb)	Metallic element	Vehicles (burning leaded gasoline), metal refineries & power plants	Brain & kidney damage; contaminated crops & livestock
Oxides of Nitrogen (NO _x)	Several gaseous compounds made up of nitrogen & oxygen	Vehicles, power plants (burning fossil fuels) & coalburning stoves	Lung damage; acid rain (e.g., structural & vegetation damage; ozone & smog

Properties of the Criteria Pollutants (con't)

Pollutant	Description	Sources	Effects	
1 Officialit	Description	Sources	Effects	
		•		
Ozone	Secondarily-formed	Vehicle exhaust	Lung damage; eye irritation;	
(\mathbf{O}_3)	gaseous pollutant	and certain other	respiratory problems;	
		fumes; other	vegetation damage; smog	
		photochemical		
		reactions		
Particulate	Very small particles	Diesel engines;	Lung damage; eye irritation;	
Matter	of soot, or other	power plants;	crop damage; visibility	
(PM ₁₀ &	matter, including	windblown dust;	impairment; discoloration of	
$PM_{2.5}$	tiny droplets of	wood stoves; other	buildings and statues	
	liquids	industrial processes		
Sulfur	Gaseous compounds	Coal-burning	Eye irritation; lung damage;	
Dioxide	made-up of sulfur	power plants and	kills aquatic life; acid rain;	
(SO_2)	and oxygen	industrial sources;	damages forests; deteriorates	
		coal-burning	buildings and statues	
		stoves; refineries		

National Emission Trends

3.0 Summary of National Emissions Thenck = 3-21

Carbon Monoxide (CQ)

2nd Maximum Non-Overlapping 8-hour Ambient CO Concentration

- Ambient CO concentrations decreased 39% from 1989-1999; 3% from 1997-1998
- CO emissions decreased 16% from 1989-1998; 5% from 1997-1998
- Peak CO concentrations generally occur during colder months when auto emissions are greater and nighttime atmospheric inversion conditions are more frequent

Trends in CO Emissions

Lead (Pb)

Maximum Quarterly Ambient Pb Concentrations

- Ambient Pb concentrations decreased 56% from 1989-1998; unchanged from 1997-1998
- Pb emissions decreased 27% from 1989-1998; 1% increase from 1997-1998
- 20 years ago automotive sources were the major contributor of lead emissions; today, metals processing is the dominant source

Trends in Pb Emissions

Nitrogen Dioxide (NQ2

Annual Mean Ambient NO₂ Concentrations

- Ambient NO₂ concentrations decreased 14% from 1989-1998; unchanged from 1997-1998
- NO₂ emissions increased 2% from 1989-1998; decreased 1% from 1997-1998
- Majority of NO₂ emissions are from high-temperature combustion processes (e.g., automobiles and power plants)

Trends in NO_x Emissions

Ozone (Q₃)

Annual 2nd-Highest Daily Maximum 1-hour; 4th-Highest Daily 8-hour Ambient O₃ Concentrations

- Ambient 1-hour O₃ concentrations decreased 4% from 1989-1998; increased 5% from 1997-1998
- Ambient 8-hour O₃ concentrations remained unchanged from 1989-1998; increased 4% from 1997-1998
- VOC emissions decreased 20% from 1989-1998; decreased 5% from 1997-1998
- $O_3 = VOC + NO_x + Sunlight$

 $NO_x = (NO + NO_2 + other)$ oxides of nitrogen)

Trends in VOC Emissions

Annual Mean Ambient PM₁₀ **Concentrations**

- Ambient PM₁₀ concentrations decreased 25% from 1989-1998; unchanged from 1997-1998
- PM₁₀ emissions have decreased 19% from 1989-1998; unchanged from 1997-1998
- Primary & secondary particles
- Chemical & physical properties vary by location, time of year and meteorology

Trends in PM₁₀ Emissions

National - PM

Annual Average 1998 PM_{2.5} Ambient Concentrations (mg/m³) at IMPROVE Sites

- Natural east-to-west gradation in concentrations
- Eastern sites have sulfate concentrations 4x-5x higher than western sites

		East	West
•	Sulfate	56%	33%
	Elemental		
	Carbon	5%	6%
	Organic		
	Carbon	27%	36%
	Nitrate	5%	8%
	Crustal	7%	17%

Eastern - PM

- Ambient PM_{2.5} concentrations have decreased 9% between 1992-1995; increased 12% from 1995-1998; thus, a net 2% increase from 1992-1998
- Sulfate dominates the eastern PM_{2.5} species, followed by Organic Carbon
- Nitrate, Elemental Carbon and Nitrate are approximately the same

Ambient PM_{2.5} Concentrations for Eastern U.S. IMRPOVE Sites

Western - PM

- Ambient PM_{2.5} concentrations have decreased 5% from 1992-1998; and, decreased 11% over the longer period from 1989-1998
- Organic Carbon and Sulfate dominate the western PM_{2.5} species, followed by Crustal Material
- Nitrate and Elemental Carbon are approximately the same

Ambient PM_{2.5} Concentrations for Western U.S. IMRPOVE Sites

Trends in PM_{2.5} Emissions

Sulfur Dioxide (SQ₂)

- Ambient SO₂ concentrations decreased 39% from 1989-1998; decreased 2% from 1997-1998
- SO₂ emissions have decreased 16% from 1989-1998; unchanged from 1997-1998
- National reductions in SO₂
 (emissions and ambient
 concentrations) from 1994 1995 are due mainly to the
 implementation of Phase I
 of the Acid Rain Program

Annual Mean Ambient SO₂ Concentrations

Trends in SO₂ Emissions

Other Related Issues

- Acidic Deposition or "Acid Rain"
 - SO₂ and NO_x
 emissions react in the atmosphere with water, oxygen and other oxidants to form acidic compounds
 - Wet/Dry Deposition
 - 64% SO₂ and 26%
 NO_x Electric Utilities

Other Related Issues

- Regional Haze/Visibility
 - Occurs as a result of scattering and absorption of light by air pollution
 - Primary & SecondaryEmissions
 - Limits distance we can see;degrades color, clarity and contrast of scenes

Images of Glacier National Park (left) and Dolly Sods Wilderness (right)

Other Related Issues

- Greenhouse Effect/ Global Warming
 - Earth's temperature is rising due to releases of certain gases to the atmosphere
 - Carbon Dioxide (CO₂) 85% of U.S. greenhouse gas emissions; Methane (CH₄), second largest

Summary

- The Clean Air Act is the impetus for continued improvements in U.S. Air Quality
- Scientific and other International developments continue to effect implementation of air pollution programs at EPA
- Much progress has been made; however, there is still a great deal of work to continue
- Ultimately, air quality improvements are the result of partnerships between governments (international, federal, state and local), stakeholders (industry) and the general public